Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging.

نویسندگان

  • Betty B Yao
  • Gin Hsieh
  • Anthony V Daza
  • Yihong Fan
  • George K Grayson
  • Tiffany Runyan Garrison
  • Odile El Kouhen
  • Bradley A Hooker
  • Madhavi Pai
  • Erica J Wensink
  • Anita K Salyers
  • Prasant Chandran
  • Chang Z Zhu
  • Chengmin Zhong
  • Keith Ryther
  • Megan E Gallagher
  • Chih-Liang Chin
  • Ann E Tovcimak
  • Vincent P Hradil
  • Gerard B Fox
  • Michael J Dart
  • Prisca Honore
  • Michael D Meyer
چکیده

Studies demonstrating the antihyperalgesic and antiallodynic effects of cannabinoid CB(2) receptor activation have been largely derived from the use of receptor-selective ligands. Here, we report the identification of A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], a potent and selective CB(2) agonist as characterized in in vitro pharmacological assays and in in vivo models of pain and central nervous system (CNS) behavior models. In radioligand binding assays, A-836339 displays high affinities at CB(2) receptors and selectivity over CB(1) receptors in both human and rat. Likewise, A-836339 exhibits high potencies at CB(2) and selectivity over CB(1) receptors in recombinant fluorescence imaging plate reader and cyclase functional assays. In addition A-836339 exhibits a profile devoid of significant affinity at other G-protein-coupled receptors and ion channels. A-836339 was characterized extensively in various animal pain models. In the complete Freund's adjuvant model of inflammatory pain, A-836339 exhibits a potent CB(2) receptor-mediated antihyperalgesic effect that is independent of CB(1) or mu-opioid receptors. A-836339 has also demonstrated efficacies in the chronic constrain injury (CCI) model of neuropathic pain, skin incision, and capsaicin-induced secondary mechanical hyperalgesia models. Furthermore, no tolerance was developed in the CCI model after subchronic treatment with A-836339 for 5 days. In assessing CNS effects, A-836339 exhibited a CB(1) receptor-mediated decrease of spontaneous locomotor activities at a higher dose, a finding consistent with the CNS activation pattern observed by pharmacological magnetic resonance imaging. These data demonstrate that A-836339 is a useful tool for use of studying CB(2) receptor pharmacology and for investigation of the role of CB(2) receptor modulation for treatment of pain in preclinical animal models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor.

JTE-907 [N-(benzo[1,3]dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydroquinoline-3-carboxamide] was evaluated in vitro and in vivo as a novel selective ligand for cannabinoid receptor of peripheral type (CB2). The compound binds with high affinity to human CB2 or mouse CB2 expressed on CHO cell membrane and to rat CB2 on splenocytes. The K(i) affinities for human, mouse, and rat CB2 we...

متن کامل

Pharmacological evaluation of a novel cannabinoid 2 (CB2) ligand, PF-03550096, in vitro and in vivo by using a rat model of visceral hypersensitivity.

Previous studies have shown that cannabinoid 2 (CB(2))-receptor agonists might have analgesic effects on visceral hypersensitivity. To extend these results, we have determined the pharmacological characteristics of a newly designed CB(2) ligand, N-[(1S)-1-(aminocarbonyl)-2,2-dimethylpropyl]-3-(3-hydroxy-3-methylbutyl)-2-oxo-2,3-dihydro-1H-benzimidazole-1-carboxamide (PF-03550096), in vitro and ...

متن کامل

Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands

BACKGROUND Both T-type calcium channels and cannabinoid receptors modulate signalling in the primary afferent pain pathway. Here, we investigate the analgesics activities of a series of novel cannabinoid receptor ligands with T-type calcium channel blocking activity. RESULTS Novel compounds were characterized in radioligand binding assays and in vitro functional assays at human and rat CB1 an...

متن کامل

Allosteric modulation of the cannabinoid CB1 receptor.

We investigated the pharmacology of three novel compounds, Org 27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide), Org 27759 (3-ethyl-5-fluoro-1H-indole-2-carboxylic acid [2-94-dimethylamino-phenyl)-ethyl]-amide), and Org 29647 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid (1-benzyl-pyrrolidin-3-yl)-amide, 2-enedioic acid salt), at the cannabinoid CB1...

متن کامل

The type 2 cannabinoid receptor regulates bone mass and ovariectomy-induced bone loss by affecting osteoblast differentiation and bone formation.

The type 2 cannabinoid receptor (CB2) has been reported to regulate bone mass and bone turnover but the mechanisms responsible are incompletely understood. In this study we investigated the role that the CB2 pathway plays in bone metabolism using a combination of genetic and pharmacological approaches. Bone mass and turnover were normal in young mice with targeted inactivation of CB2 receptor (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 328 1  شماره 

صفحات  -

تاریخ انتشار 2009